Acquiring Forensic Evidence from Infrastructure-as-a-Service Cloud Computing

Exploring and Evaluating Tools, Trust, and Techniques

Josiah Dykstra and Alan T. Sherman

August 7, 2012
The views expressed in this presentation are mine alone. Reference to any specific products, process, or service do not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or the Department of Defense.
Outline

- Today
 What’s the problem?
- Trust
 Can you believe the data?
- Tests
 Experiments in forensic acquisition
- Trouble
 Results and alternatives
- Tomorrow
 Future work
Today: What’s the problem?

Site Maintenance Notice

The server is currently down for maintenance.

We apologize for the inconvenience. Please try again later.
Investigating Crimes in the Cloud
Acquiring Remote Data
Insider Threat Blog

Insider Threats Related to Cloud Computing--Installment 2: The Rogue Administrator
By Insider Threat Team on August 6, 2012 1:07 PM | Permalink

Hi, this is Bill Claycomb and Alex Nicoll with installment 2 of a 10-part series on cloud-related insider threats. In this post, we present three types of cloud-related insiders and discuss one in detail—the “rogue administrator.” This insider typically steals the cloud provider’s sensitive information, but can also sabotage its IT infrastructure. The insider described by this threat may be motivated financially or by revenge.

We consider the cloud-related insider threat from three different perspectives: the rogue administrator employed by a cloud provider, the employee in the victim organization that exploits cloud weaknesses for unauthorized access, and the insider who uses cloud resources to carry out attacks against the company’s local IT infrastructure. Though we describe cloud-specific insiders, we believe the people behind these malicious insider attacks will continue to fit the profiles of other insider crimes identified by CERT in the book The CERT Guide to Insider Threats: How to Prevent, Detect, and Respond to Information Technology Crimes (Theft, Sabotage, Fraud). As a result, mitigation strategies may be extrapolated from prior insider threat models; we will briefly discuss those options as well.

The Rogue Administrator
What would they use?

“There are more than 40,000 licenses of EnCase® technology worldwide, the EnCase Enterprise platform is used by more than sixty percent of the Fortune 100, and thousands attend renowned Guidance Software training programs annually.” – guidancesoftware.com

“More than 100,000 users in law enforcement, government agencies, corporations and law firms around the world rely on AccessData software solutions and its premier digital investigations and hosted review services.” – accessdata.com
“Incident response and computer forensics in a cloud environment require fundamentally different tools, techniques, and training...”

Challenging Security Requirements for US Government Cloud Computing Adoption (Draft), Version 1.6, 2012
Trust

Service Layers Definition

* as a Service

People

Client Device

Interconnecting Network

Hosted Application Software

Infrastructure Software

IT Department

Operating Systems

Virtualisation Layer

Host OS

Physical Hardware

Physical Servers

Networking & Firewalling

Data Centre Mechanical & Electrical

Notes:
Brand names for illustrative / example purposes only, and examples are not exhaustive.

http://www.katescomment.com/iaas-paas-saas-definition/
Cumulative Trust

<table>
<thead>
<tr>
<th>Layer</th>
<th>Cloud Layer</th>
<th>Acquisition Method</th>
<th>Cloud Trust required</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Guest Application</td>
<td>Depends on data</td>
<td>OS, HV, Host, Hardware, Network</td>
</tr>
<tr>
<td>5</td>
<td>Guest OS</td>
<td>Remote forensic software</td>
<td>OS, HV, Host, Hardware, Network</td>
</tr>
<tr>
<td>4</td>
<td>Virtualization</td>
<td>Introspection</td>
<td>HV, Host, Hardware, Network</td>
</tr>
<tr>
<td>3</td>
<td>Host OS</td>
<td>Access virtual disk</td>
<td>Host, Hardware, Network</td>
</tr>
<tr>
<td>2</td>
<td>Physical Hardware</td>
<td>Access physical disks</td>
<td>Hardware, Network</td>
</tr>
<tr>
<td>1</td>
<td>Network</td>
<td>Packet capture</td>
<td>Network</td>
</tr>
</tbody>
</table>
Tests

Experiment 1 (Guest OS)
- Launch and “hack” a virtual machine in EC2
- Use EnCase and FTK agents to acquire disk images remotely
- Use Fastdump, FTK Imager, Memoryze to acquire memory images remotely
- Analyze data to determine success

Experiment 2 (Virtualization)
- Launch and “hack” a virtual machine on a private Eucalyptus cloud
- Use LibVMI to inject an EnCase agent to acquire disk image
- Analyze data to determine success

Experiment 3 (Host OS)
- Launch and “hack” a virtual machine in EC2
- Use AWS Export to obtain a disk image
- Analyze data to determine success
Success

- Microsoft Windows 2008 R1 SP2 Datacenter Edition, 32bit, m1.small, 30GB HDD, 2GB RAM

- Full drive/memory images (lacking checksum)
- Correct timeline
- Little evidence of the cloud (drivers, etc.)
- *Could the data have been manipulated?*
Results

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Tool</th>
<th>Evidence Collected</th>
<th>Time (Hrs)</th>
<th>Trust Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EnCase</td>
<td>Success</td>
<td>12</td>
<td>OS, HV, Host, Hardware, Network</td>
</tr>
<tr>
<td>1</td>
<td>FTK</td>
<td>Success</td>
<td>12</td>
<td>OS, HV, Host, Hardware, Network</td>
</tr>
<tr>
<td>1</td>
<td>FTK Imager (disk)</td>
<td>Success</td>
<td>12</td>
<td>OS, HV, Host, Hardware, Network</td>
</tr>
<tr>
<td>1</td>
<td>Fastdump</td>
<td>Success</td>
<td>2</td>
<td>OS, HV, Host, Hardware, Network</td>
</tr>
<tr>
<td>1</td>
<td>Memoryze</td>
<td>Success</td>
<td>2</td>
<td>OS, HV, Host, Hardware, Network</td>
</tr>
<tr>
<td>1</td>
<td>FTK Imager (memory)</td>
<td>Success</td>
<td>2</td>
<td>OS, HV, Host, Hardware, Network</td>
</tr>
<tr>
<td>1</td>
<td>Volume block copy (dd)</td>
<td>Success</td>
<td>14</td>
<td>OS*, HV, Host, Hardware, Network</td>
</tr>
<tr>
<td>2</td>
<td>Agent Injection</td>
<td>Success</td>
<td>1</td>
<td>HV, Host, Hardware, Network</td>
</tr>
<tr>
<td>3</td>
<td>AWS Export</td>
<td>Success</td>
<td>120</td>
<td>AWS Technician, Technician’s Host, Hardware & Software, AWS Hardware, AWS Network</td>
</tr>
</tbody>
</table>
Trouble

- Vulnerability of forensic workstation online
- Security of remote agent
- Cost – time and $$$
- Require changes to cloud environment
- Unanswered legal questions
- *Is this “better” than today?*
Alternatives

- Root Trust in the Host/VM with TPMs
- Collection from Management Plane
- Forensics Support as a Service
- Contract and Legal Solutions
Management Plane

Instance Detail

Overview Log VNC

Instance Overview

Info
Name test1
ID 4a5b94fd-40ee-49de-9668-d
Status

Hosted Virtualization

Virtual Machine Monitor (VMM)

Host Operating System

Shared Hardware

Virtual Machine 1 Virtual Machine 2 Virtual Machine 3

Application

Application

Application
Tomorrow: Future work

- Corroborate from multiple layers
- “Live” Forensics with Snapshots
- Parallel analysis of PaaS and SaaS
- Consumer-driven forensic capabilities
- Legal analysis
Questions

dykstra@umbc.edu
sherman@umbc.edu