Visualization in Testing a Volatile Memory Forensic Tool

Hajime (Jim) Inoue
hinoue (at) atc-nycorp.com

Frank Adelstein
Robert Joyce
Follow Along

- Paper on page S42
- Flickr: http://doiop.com/dfrws2011
Volatile Memory Analysis

• Study growing rapidly since 2005 DFRWS memory challenge
• String search/carving
• Tools such as PTFinder, Volatility allow reconstruction (for Windows)
• Growing disk sizes, use of encryption motivate its increasingly important role
• No tool on Macs since OS X 10.4
Current Imaging Techniques

• Hardware
 – Cards
 – Firewire

• Software
 – Windows: mdd, win32dd, dumpmmf
 – Linux: /dev/mem, /dev/crash
 • Broken by design
 – OS X: 10.0-10.4 (PPC)
 • Broken by design
 • kmem=1 will create broken /dev/kmem, /dev/mem
Mac Memory Reader (mmr) on OS X

- Implemented as a Kernel Extension (kext)
- Supports >= 10.4 (ppc, i386, x64)
- Creates two devices
 - /dev/pmap – physical memory map
 - same format as showbootermemorymap debug macro
 - /dev/mem – physical memory device
- Userspace utility outputs as Mach-o dump file
 - dd also supported
Memory Imager Properties
4 metrics for evaluation

1. **Speed** – Copy memory fast for consistency
2. **Completeness** – Copy all of physical memory
3. **Accuracy** – Copy memory accurately
4. **Non-Interference** – Don’t overwrite memory
Testing our /dev/mem comparison against dd

1. **Speed**: 14.2 secs (mmr) vs 16.4 secs (dd)
2. **Completeness**: 131072 (mmr) vs 131072 (dd)
3. **Accuracy**: 93% similar (using netcat)
4. **Non-interference**:
 - Average similarity after 5 runs
 - mmr: 97%
 - dd: 32%

8/1/2011
Testing our /dev/mem
Finding our bug

• Using debug info to check symbols
• String injection
 – Inject kext with known unique string
 – Look for it in image file
 – Multiple copies?
 • Disk cache, user space applications, kernel

• String extraction found large identical sequences of pages 😞
Dotplots

- Forward Similarity
- Retrograde Similarity
- Duplication
Physical Memory Dotplots

- Each page (hash) is a symbol
- Many pages per pixel (page window)
- Blackbody radiation palette
 - Black – no similarity
 - White – all pages identical
 - Blue – all pages are the zero page
- Sampling reduces runtime
Visualizing our bug
Visualizing our bug: No Zero Pages
Visualizing our bug: Density Plots
Density Plots

- Calculate ordered list of page frequencies
- Plot density of n most frequent (we chose $n=8$) against each page window.
Visualizing our bug: Density Plots
Visualizing our bug: Density Plots
Visualizing our bug: Density Plots
Visualizing our bug: Non-Buggy Plot
Using the Hibernation File
Using the Hibernation File
Comparing OS X /dev/mem to MMR
Apple’s /dev/mem
(on Intel)
OS X dd to Disk
OS X dd to Disk
OS X `dd` to Disk
OS X dd to Disk
String Injection
Conclusion

• Implemented a physical memory imager for OS X
• Established metrics for imaging:
 – Speed, completeness, accuracy, non-interference
• With no ground truth, testing is difficult
 – Tools produce different results
• Visualization can help:
 – dotplots
 – density plots
• OS X:
 – Don’t record dd to disk
 – Don’t rely on the hibernation file
Future Work

• Mac Memory Reader for Lion (OS X 10.7)
 – Released July 28th

• Analysis
 – Matthieu Suiche – Blackhat Paper: Mac OS X Physical Memory Analysis
 – Kyeong-Sik Lee - Volafox
 – Our own tools are forthcoming
Questions

(How was the background image generated?)