
Forensic carving of network packets and associated data
structures

Robert Beverly, Simson Garfinkel*, Greg Cardwell

Naval Postgraduate School, Monterey, California, United States

Keywords:

Carving

Network Carving

bulk_extractor

Network analysis

Cross drive analysis

a b s t r a c t

Using validated carving techniques, we show that popular operating systems (e.g.

Windows, Linux, and OSX) frequently have residual IP packets, Ethernet frames, and

associated data structures present in system memory from long-terminated network

traffic. Such information is useful for many forensic purposes including establishment of

prior connection activity and services used; identification of other systems present on the

system’s LAN or WLAN; geolocation of the host computer system; and cross-drive analysis.

We show that network structures can also be recovered from memory that is persisted

onto a mass storage medium during the course of system swapping or hibernation. We

present our network carving techniques, algorithms and tools, and validate these against

both purpose-built memory images and a readily available forensic corpora. These tech-

niques are valuable to both forensics tasks, particularly in analyzing mobile devices, and to

cyber-security objectives such as malware analysis.

Published by Elsevier Ltd.

1. Introduction

The value of many devices, whether personal computers,

laptops, electronic book readers, or tablets, lies in their ability

to attach to networks and communicate with other devices

and services via the Internet. Information about the networks

to which devices have connected and the communication

patterns of those devices similarly provides forensic investi-

gators a wealth of information.

For example, the set of source Internet Protocol (IP)

addresses a device has acquired over time can provide clues to

its physical network attachment points andmobility patterns.

Thedestination addresses of IP packets canprovidea picture of

commonly visited web sites, parties transferring files, and the

exchangeof email. Asa result, it is commonforensicpractice to

scavenge a subject’s device for network information and

present that information to analysts and investigators.

EthernetMedia Access Control (MAC) addresses can also be

of significant forensic value. The first three octets of an

Ethernet MAC are assigned to specific equipment vendors and

can be used to infer information about the equipment using

a particular MAC address. But the MAC addresses of other

machines on the subnet of the subject’s device can also be

revelatory. For example, MAC addresses of wireless routers

can be correlated with war-driving databases and used to

determine the physical location of a device. Themere fact that

a computer has been associated with a physical network

(either wired or wireless) can also be used to infer member-

ship in an organization or access to a physical location.

Existing forensic tools examine media, e.g. a captured hard

drive or memory stick, for email addresses, web site

addresses, and domain names. Typically these tools work by

extracting printable strings using regular expressions from

web browser caches, emailmessages, and the like. In contrast,

* Corresponding author.
E-mail addresses: rbeverly@nps.edu (R. Beverly), slgarfin@nps.edu (S. Garfinkel).

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 8eS 8 9

1742-2876/$ e see front matter Published by Elsevier Ltd.
doi:10.1016/j.diin.2011.05.010

our work relies on lower-layer binary network signatures such

as packet and socket data structures. These structures are

created in memory and maintained by the operating system

during the normal course of network activity. However,

network structures are not confined to memory images as

they are invariably written to fixed storage when a computer

swaps or enters system hibernation. Additionally, network

programs (e.g. domain name clients and servers, DHCP clients

and servers, etc.), may use binary network data structures

when storing configurations or caching results to the file

system, making such files useful sources of data.

To validate the potential utility of carving for binary

network data structures, we add network carving support to

the bulk_extractor toolkit (Garfinkel, in submission May 2011)

and verify our results against both disk images with known

provenance and a large research forensic corpus. On ground

truth images using checksum validation, we achieve perfect

recall (all IP addresses found), and perfect precision (no

spurious IP addresses identified).

Additionally, we find a surprising amount of discoverable

residual network information in a public corpus of approxi-

mately 1800 images. For these, where ground truth is

unknown, we show that there is a correlation between

discovered network structures and their ASCII representation

elsewhere. This dual-modality analysis adds confidence that

our approach is broadly applicable and produces correct

results.

This paper starts with a brief review of prior work in

Section 2. Next we present our validated carving technique for

IP packets and network data structures (Section 3). Section 4

presents experimental results of applying these techniques

to a variety of forensic datasets. We conclude with a discus-

sion of applications and opportunities for future work in

Section 5.

Our work is particularly valuable to forensic analysts

examining mobile devices such as laptops. Not only do

laptops frequently hibernate during their normal course of

operation, their natural mobility makes establishing connec-

tion activity and network attachment point location impor-

tant. “Smart” mobile phone handsets may similarly be

amenable to network carving; this is a subject of future

research. Finally, network carving may be useful in other

domains such as malware analysis.

2. Prior work

In this work, we broaden the scope of network forensics to

include the discovery of long-terminated network data in

memory and on fixedmedia. Whereas prior work and existing

tools are largely limited to the discovery of so-called “fully-

qualified domain names”, (e.g. www.cnn.com) and “dotted-

quad” IP addresses, (e.g. 157.166.224.26), we find significant

additional information present in the form of intact packets

and binary network data structures.

The Volatility memory analysis framework (Walters &

Petroni, February 2007) most closely parallels our effort.

Volatility can analyze the memory of live systems, memory

dumps, and entactWindows hibernation files. The framework

finds, traces, and prints a variety of memory structures from

various operating systems. Most relevant to our work is Vol-

atility’s connscan2 function, which performs limited carving

of Windows memory structures associated with TCP connec-

tions. In addition to these Windows-specific connections, our

network carver extracts and validates socket, packet, and

Ethernet frame data structures. As a result, we achieve

a significantly higher recall against ground truth data than

does Volatility.

Beyond Volatility, we find just one other reference to

“network carving” in the literaturedthe syllabus of a SANS

course (SANS, 2010) that discusses carving of web pages out of

the caches of web proxies, and carving files out of network

packet streams. We found this use of the word “carving” odd,

since tools such as tcpflow (Elson and Garfinkel, 2011) break

individual streams into their own files, performing much the

same function.

Several groups have explored searching through kernel

memory for code or data signatures. Dolan-Gavitt et al. (2009)

describe an approach for identifying kernel-mode rootkits by

searching for code signatures by are automatically generated.

Lin et al. (February 2011) present an approach findingmalware

by finding inconsistencies in signature graphs generated for

kernel data structures. Yet a third technique has been devel-

oped by Liang et al. (March 2011). However, we have found no

prior work carving IP packets or Ethernet frames out of kernel

memory or memory dumps. Originally we thought that such

carving might not be possible, as we assumed that portions of

the Ethernet and/or IP protocol would be handled in hardware

for performance reasons and not exposed to the operating

system. Instead, as we shall show, we find significant residual

binary network structure data.

Because hibernation files are an invaluable source of

network structures, it is important that we handle them

correctly. Unlike MacOS and Linux, Microsoft Windows

hibernation files are partially compressed using the Microsoft

XPress Block Memory Compression algorithm (Suiche, 2008).

Volatility implements hibernation file decompression but only

for intact hibernation files. Unfortunately, Windows corrupts

the beginning of a hibernation file when the system reboots so

that it cannot be used again. We extend Suiche’s work by

implementing an improved scanner that can detect signa-

tures associated with the start of intact Windows hibernation

pages (which may be present in a corrupt hibernation file or

located elsewhere on the hard drive as residual data from

previous hibernation files) and optimistically decompresses

them until an error occurs. As a result, our scanner is able

to process many more hibernation files than Volatility

currently can.

Garfinkel performed multi-drive correlation (“cross-drive

analysis”) using “pseudo-unique information” (actually

persistent identifiers) such as social security numbers, credit

card numbers and email addresses (Garfinkel, August 2006).

Here we extend that work by performing multi-drive correla-

tion using Ethernet MAC addresses extracted from validated

IP packets. Garfinkel (August 2007) also proposed improving

file carving by validating internal document binary structures.

We extend that work by validating structures not just for

internal consistency, but for consistency with external data-

bases (in this case, the Internet’s schema for assigning IPv4

addresses).

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 8eS 8 9 S79

Finally, our work in geolocation was assisted by geo-

location databases created by companies such as Google

(Google Mobile, 2011) and Skyhook (Skyhook, 2011).

Our hope in this work is to demonstrate the power by

network carving and to document our techniques so that they

may be incorporated into current media forensics tools.

3. Network carving

In this section we discuss the design and construction of our

network carver; the methodology to detect network signa-

tures, the network structures we extract; and the ground truth

dataset construction for verifying our carver.

3.1. Creating ground truth data

We commenced this project by creating a ground truth data-

set on which to develop our carving strategy. We started by

securely erasing all data on a machine’s hard drive and

installing a virgin copy of the operating system. Eachmachine

was then used to connect to multiple servers on our local

network and on the Internet at large. We performed file

transfers of four files of different sizes from three distinct

systems as shown in Table 1. During this period, all of the

packets entering and leaving the machine were captured

using a promiscuous recorder. We then induced the machine

to hibernate and imaged the disk. For the ground truth data,

we experimented with a variety of operating systems

including Microsoft Windows XP (service pack 3), Windows 7

professional, and Macintosh OSX 10.6.5.

3.2. Developing carving signatures

In order to develop our network carver, we require two items:

the aforementioned dataset1 and a technique to generalize

discriminatory patterns. We note that a binary IPv4 address is

nothing more than an unsigned 32-bit integer, which appears

everywhere, therefore we must rely on surrounding contex-

tual data for validation.

We started with a set of manually-derived heuristics, for

instance: “a four-byte IP address is preceded by a variable

fragment field and a protocol field equal to six (TCP)”. Mir-

roring prior research in named entity extraction (Nadeau,

2007), we found that such heuristics are brittle, difficult to

define, and often inaccurate.

To develop better heuristics we wrote an exploratory

program that searched for the byte patterns of our known IP

addresses and computed the frequency of the n-gram byte

patterns preceding and following the addresses at various

offsets within a specified window. We then crafted new

carvers using these signatures. Finally we re-processed our

hibernation files with these signatures, tabulating all of the IP

addresses that were discovered.

For performance measures, we term a true positive (TP) as

a discovered IP address from Table 1, a false positive (FP) as an

address that was not from that table or the host computer,

and a false negative (FN) as an address in the table that is not

discovered.We use standardmetrics of precision (TP/(TPþ FP))

and recall (TP/(TP þ FP)), and manually tuned our algorithms

using the selection of n-grams.

As an illustrative example, we performed numerous

network connections from Windows, Linux, and OSX work-

stations to the destination address 172.20.104.199, suspended

the machine and captured its hibernation file. We then

scanned memory for the hex sequence corresponding to this

address (0xAC1468C7). Recall that the IP source and destina-

tion addresses occur 12 and 16 bytes into an IP packet (Postel,

September 1981). Next we computed the frequency distribu-

tion of the two-byte grams within a fixed 20 byte window

surrounding the address. Table 2 shows the most frequent 2-

grams from this analysis.

We observe that the most frequent 2-gram preceding an IP

address is 0x4000 which, upon manual inspection, appears in

the IP flags field and indicates that the “don’t fragment bit” is

set. Next are 0x0800 and 0xF202, the trailing bytes of the

Ethernet (Hornig, April 1984) link-layer encapsulation of the IP

packet (0x0800 is the Ethernet type field indicating an IP

packet while 0xF202 is the last two bytes of the source

Ethernet address). As we set out to discover IP packets, finding

Ethernet structures is one demonstration of the power of the

frequency analysis approach. We use this discovery to carve

Ethernet addresses in x3.3.
0x4508 and 0x4500 indicate the start of an IP version 4

packet with the type of service bits set or cleared (the ssh

secure shell file transfer sessions have this bit set). The 0x4006

represents an IP TTL of 64 (0x40) and protocol TCP (0x06). The

fact that 0xF202, 0x4006, and 0x4508 all have the same

frequency is relevant and represent 368 Ethernet encapsu-

lated TCP/IP packets with TTL of 64 and type of service bits set.

Similar analysis with different search addresses and

different n-gram sizes reveal additional clues for choosing

Table 1 e Ground truth flows. Each flowwas downloaded
from the specified address using either HTTP or SCP.

File Size Host

Small 10 kB 18.26.0.230

Medium 100 kB 18.9.22.69

Large 1 MB 128.30.2.134

Huge 10 MB 18.26.1.76

Table 2 e IP 2-gram analysis.

Predecessor freq Successor freq

Count 2-gram Count 2-gram

434 0x4000 428 0x0016

421 0x0800 426 0x0447

368 0xF202 412 0x0A79

368 0x4006 374 0xAC14

368 0x4508 374 0x694A

368 0x0017 41 0x0000

66 0x4500 12 0x2000

. . . .

1 A product of this research is the creation of disk images with
known ground truth that will be contributed to an existing
forensic corpus (Garfinkel et al., August 2009).

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 8eS 8 9S80

discriminating features. For example, the most frequent 8

byte successor gram that is common across different target

addresses is all zeros. This detail supported our decision to

scan for socket network address structures (struct sock-

addr_in), as precisely eight sequential zero bytes is somewhat

unusual in memory dumps.

Although it is possible to take the results of our n-gram

study and use this to train amachine learning algorithm, such

an approach would train the system on both the structure of

our data (the IP packets) as well as the content (the actual data

being sent over the network connection). We believe that

instead our manual approach to feature selection results in

a scanner that is more accurate, since it relies on expert data

that is unavailable to the naı̈ve machine learning algorithm.

3.3. Methodology

On the basis of the preceding signature analysis, we created

a new module (scan_net) for bulk_extractor, an open source

forensic tool. This scanner carves the following data

structures:

� IP Packets: As depicted in Fig. 1, we identify a potential IP

packet as having a first byte of 0x45 (IP version 4 and

a standard header length), a flags and offset field of 0x0000

or 0x4000 and a protocol of either 0x06 or 0x11 (TCP or UDP).

When possible, we verify the IP-level packet checksum.

� Socket structures: We find socket structures in the form

shown in Fig. 2 and specified in netinet/in.h. An address

family of 0x02 (Internet) and port precedes the remote

address. Eight bytes of zero follow. Note that because long

strings of zero bytes are common on disk, socket structures

generate the most false positives. An analysis of the theo-

retical false positive rate is provided in x4.1.
� Windows: TCPT Microsoft Windows platforms maintain

TCP-specific connection structures. We adopt the func-

tionality in Volatility’s connscan by scanning for the four-

byte signature 0x54455054 (“TCPT”) with the correct pool

size, and then interpreting the following 28 bytes as

a _TCPT_OBJECT.

� Ethernet: The most common link-layer technologies are 802.3

Ethernet and 802.11 wireless, both of which include globally

unique six-byte hardware MAC addresses. Many of the IP

packets we discover while carving are encapsulated in an

Ethernet frame2.Thebest signature is0x0800, Ethernet IP type

(Hornig, April 1984), followed by the beginning of an IP packet

(Fig. 3). Recovering Ethernet MAC addresses enables addition

inferences, as there now exist databases of wireless router

MAC addresses Such databases, (e.g.wigle.net; Skyhook) and

other war-driving collections, can be used to accurately geo-

locate where the computer was previously used.

In practice, carving for all of these various binary network

structures proves valuable. For instance, the previously

available technique of discovering Windows TCPT structures

accounts for only 1% of the discovered IP address instances on

our selected ground truth data.

Second,many hosts, particularly those found in residential

installations, are given a private IP address (Rekhter et al.,

February 1996) and use some form of network address trans-

lation (NAT). The NAT maps the private local address to

a globally routeable Internet address. Unfortunately, a private

IP address effectively hides the network attachment point of

the host. In these instances, the discovery of the source

Ethernet MAC addresses can be vitaldfor example, by con-

necting a piece of seized media to a specific home router.

3.4. Validating IP addresses

As shown in x4.1, our signatures have a low, but non-

negligible analytic false positive rate. In practice the false

positive rate can be higher as the prior probability of any given

byte is not uniform, and the probabilities of individual bytes

are not independent. To cope with false positives, we imple-

ment several techniques for validating IP address hits.

� Checksums: IP packets provide a means of self-validation by

including a checksum over the IP header (Braden et al.,

September 1988). Where possible, we validate that

a correct checksum exists for all discovered IP packets.

Unfortunately, we cannot exclude occurrences of invalid

checksums as modern hardware performs checksum off-

loading (Chase et al., April 2001) as a performance optimi-

zation. In many cases, garbage or zero bytes are passed by

the operating system to the physical network card which

then computes the checksum in hardware for transmission

on the wire. On our ground truth data, we find approxi-

mately 18% of discovered IP address instances have an

invalid checksum while the remaining 82% validate. The

addresses with invalid checksums are all false positives,

suggesting that on our particular hardware, checksum bytes

are passed from the hardware to the operating system.

� Filtering: A second means of validation is to identify bogus

addresses. IP addresses are allocated in a structured, hier-

archical manner (Hubbard et al., November 1996). While an

IP address is nothing more than an unsigned 32-bit integer,

many IP addresses are reserved (e.g. 127.0.0.0/8), invalid (e.g.

240.0.0.0/4), or simply unlikely (e.g. 224.0.0.0/4). Even more

importantly, many addresses allocated to providers are not

announced in the global BGP routing tables (Rekhter et al.,

January 2006). As such, we take the global routing table as

aggregated from many vantage points in the Routeviews

project (Meyer, 2010) and filter addresses which do not

appear in the table.

� Frequency analysis: We compute a histogram of the IP

addresses that are found in the carved data structures. IP

addresses that appear more frequently are more likely to be

the result of actual operating system activity and less likely

to be the result of random matching. To this end, we

configure bulk_extractor to create a histogram of recovered IP

addresses, TCP connections, and Ethernet MAC addresses.

� Correlation between modalities: Lastly, correlation using

different methods builds confidence in an inference. IP

addresses that are found in both IP packets and socket

structures are more likely to be IP addresses from prior

traffic than IP addresses recovered via just one modality.2 We did not, however, find any instances of ARP packets.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 8eS 8 9 S81

As indicated above, all of these techniques can be used to

increase confidence in a specific IP or Ethernet address. When

conducting triage operations, the analyst may find that it is

useful to use confidence to prioritize the effort applied to each

address. On the other hand, when performing an in-depth

analysis, it may be more productive to investigate every

confirmed and potential address that is recovered from the

media.

3.5. Local versus remote addresses

The histogram of IP addresses from IP packets provides

valuable insight into the previous connection patterns of the

device in question, but does not differentiate between

address(es) used by the subject device, i.e. the local source

address, and those of remote systems.

As one step to identify the device’s source address, we

observe that IP packets can leak valuable information

(Beverly, April 2004). We utilize the IP time-to-live (TTL)

parameter of packets to determine if they were originated by

the system, or received from a remote system. In particular, IP

routers decrement the TTL field of each packet while oper-

ating systems set the initial TTL of outgoing IP packets in

powers of two (the most typical values being 64, 128, and 255).

Because packets originating from the local host will not have

encountered any routers, and hence not had the TTL field

decremented, we can expect their TTL to be a power of two.

We use this power-of-two trick to label IP addresses

discovered via carving as local or remote.We can also use this

trick to determine the distance, measured in router hops, of

the packet source. To do sowe use thewell-knownheuristic of

selecting the next-highest power of two as the originating

0x00000000

0 7 15 23 31

16 common ports0x02

0x00000000

Discovered IP

Fig. 2 e Carving sockets: The white bytes provide a signature for the struct sockaddr network socket structure. While the

signature is large, long runs of zero bytes a common in memory dumps, forcing additional validation for IP addresses found

using this method.

Discovered IP

Discovered IP

0x45

0 7 15 23 31

0x00/0x40 0x00

muskcehC11x0/60x0

Fig. 1 e Carving IP packets: The white bytes provide a signature for a likely IP packet (pðfalse positiveÞx2L30). Some

hardware and operating systems preserve the IP checksum (in green), providing an improved means to validate the packet

on some hardware configurations. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

0x45

47

0x0800

0 7 15 23 31 39

Discovered Ethernet Address

Discovered Ethernet Address

Fig. 3 e Carving Ethernet: The white bytes provide a signature for a likely Ethernet structure, including an Ethernet IP type

(Hornig, April 1984) and first byte of IP. Ethernet addresses are especially valuable for forensics as they are unique and

attributable.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 8eS 8 9S82

TTL. If the observed TTL is greater than 128 we infer an orig-

inal TTL of 255 and if less than 32 we infer 32.

Local and remote addresses can also be directly distin-

guished by the presence of addresses in struct sockaddr

structures, if they are present.

3.6. Hibernation decompression

Because network data structures are typically created in

system memory, we naturally find significant amounts of

network information contained in hibernation files. Micro-

soft Windows hibernation files compress some of the

hibernated memory pages, implying that decompression can

yield better carving recall and performance. Unfortunately,

Windows overwrites the beginning of hibernation files when

it resumes from hibernation. As the beginning of the file

contains memory map information critical for reassembly,

overwriting makes existing hibernation systems (e.g. Walters

and Petroni, February 2007; Suiche, 2008) fail. Furthermore,

there may exist fragments of previously-used hibernation

files present in the unallocated areas of a hard drive if the

user erased the HIBERFIL.SYS and the file was later recreated

by the operating system; existing systems cannot decom-

press such fragments.

Fortunately, the beginning of each page of the Windows

memory map that is compressed using the XPress

compression algorithm is preceded with a 32-byte header

containing an 8-byte signature of 0x81 0x81 0x78 0x70 0x72

0x65 0x73 0x73 and three bytes (a, b, c) from which the

length of the compressed buffer can be decoded using

equation (1):

length ¼ a � 8þ b � 16þ c � 24
1024

þ 1 (1)

We implement a Windows hibernation scanner and decom-

pression pipeline in the bulk_extractor framework using

a modified version of Suiche’s source code.

Decompression improves the IP address hit recall by an

order of magnitude. Table 3 shows the frequency of IP

addresses discovered with and without hibernation decom-

pression enabled for one of our ground truth data systems. All

of the addresses are known to be valid, as they represent

known flows from our exploratory ground truth data image.

Whereas in compressed form the most frequently carved IP

address is 18.26.0.230, the systems’ true source IP address

(172.20.105.74) becomes the most commonly found IP address

following decompression.

4. Experimental results

In this section, we apply the aforementioned techniques to

both our ground-truth data corpus and a large, public corpus

in order to better understand the potential of our approach.

First, however, we derive the expected false positive rate on

random data for baseline comparison.

4.1. Theoretical false positive rate

If we define a hit in our carving as amatch of a specifiedm fixed

bytes from a window of N bytes, the probability of a false posi-

tive against a uniformly distributed randomN bytes is 2�8m. For

example, if we hit on IP packets by finding a leading 0x45 (IP

version 4 and header length 5), an offset of 0x0000 or 0x4000

(noneor “don’t fragment”), andaprotocol of0x06or0x11 (TCPor

UDP), we find: P (IP false positive)¼ 2�30. Thus, on randomdata,

wewill generateapproximatelyone falsepositiveperGBofdata.

Because we match on eight bytes of zeros and a byte of

family in struct sockaddr, we expect a 2�72 chance of gener-

ating a false hit with this second approach. In reality, disks

frequently contain long strings of zeros, effectively reducing

our rate to: pðsockaddr false positiveÞx2�8�pðtransÞ, where

p(trans) is the probability of a transition between a run of 8

zero bytes and a region of non-zero bytes.

Finally, the probability of generating a false positive using

only IP checksums (Braden et al., September 1988) against

randomly generated IP packets is relatively high: 2�16. To see

this, note that the IP checksum uses the 1’s compliment of

two-byte words in the IP header. Therefore, a random

ensemble of nine two-byte words generates a randomly

drawn two-byte word which must match the checksum field.

Thus, there is a one in 216 chance of a match at random (Stone

et al., October 1998).

4.2. Comparison with volatility

Our first performance experiment concerns the ability to

discover additional network information beyond that inferred

by Volatility. We created a fresh install of Windows XP in our

controlled environment. We then performed the large file

transfer while using an external packet capture device. Once

the transfer completed, we manually hibernated the machine

and retrieved the hibernation file from the disk. Running

Volatility against this image using “connscan2” found no

addresses or connections, while our binary network carving

technique discovered both the host’s source IP address and

the remote destination.

For additional external validation, we compared our tool

against Volatility on the NIST CFReDS (NIST) memory images.

These images are labeled with the destinations to which the

browser had been pointed. Whereas Volatility does not find

a network connection to the web site w3.org, our technique

discovers a residual IP packet.

4.3. Against ground truth data

Next, we examine the performance of our scanner against the

ground truth images we previously created. In all instances,

Table 3 e Windows hibernation file decompression: by
implementing a per-fragment decompression algorithm,
we significantly improve IP address carving recall.

Address Count Decompressed count

172.20.105.74 25 600

172.20.104.199 41 434

18.26.0.230 43 162

172.20.20.11 0 4

. . .

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 8eS 8 9 S83

across all operating systems,we are always able to retrieve the

machine’s local IP address. Table 4 shows the precision of

network carving using only high-confidence and all addresses.

We label an IP address as a true positive when it is discovered

and also appears in the captured packet trace. Similarly,

a false positive is one that we discover, but does not appear in

the packet trace. The precision of the validated, high-

confidence addresses is quite high. Not only are the host’s

source IP address and the HTTP transfer destination addresses

discovered, we are typically able to discovermany of the other

machines in the subnet that are sending broadcasts, for

instance Windows file sharing.

4.4. Against real data corpus

Having validated our methodology, we apply our network

carving to 1817 images in the Real Data Corpus (Garfinkel

et al., August 2009). Note that this corpus contains images

from not only general purpose computers, but also from

digital cameras, music players, etc. Specifically, using oper-

ating system inference techniques, 335 images are a version of

Windows. Of the 1817 images, we discover IP addresses on 723

(x40%). Those images in which no IP addresses are found

have been excluded from this analysis.

Unlike the controlled dataset, we have only limited ground

truth over the images in the larger corpus. To ascertain how

representative are these discovered IP addresses, we correlate

them against discovered dotted-quads as represented in

ASCII. We expect some degree of correlation as a host’s

address will often appear in configuration files, logs, caches,

etc. that are found in the natural course of carving by

bulk_extractor.

Fig. 4 shows a scatter plot for the drives. On the typical

drive there are significantly more IP addresses that can be

found from the ASCII than from network carving, and the

number of addresses that correlate varies considerably per

drive.

Notice that there are between one and two orders of

magnitude more IP addresses from ASCII carving than by

network carving. This is not just because network carving

finds relatively few IP addressesdit is because state-of-the-art

ASCII IP address carving techniques search for IP addresses

using regular expressions, and thus generate a significant

number of false positives from software version numbers,

numbers in spreadsheets, and other sources. In contrast

network carving, especially from IP packets with valid

checksums, generates high-quality IP addresses with a negli-

gible false-positive rate.

We find an average of 2258 IP addresses in ASCII and 21 IP

addresses via binary network structure carving per drive

(respectively a standard deviation of 19,635 and 52). On 66 of

the drives, we find validated IP addresses via network carving

that do not appear elsewhere in ASCII form.

For a given image i, let the correlation factor ci be the

fraction of IP addresses found in network structures that are

also found in ASCII form elsewhere in the image. Fig. 5 shows

the cumulative distribution of the 723 images as a function of

c. We analyze two cases, first the correlation factor for all

discovered IPs and second the correlation for IPs with

a frequency greater than one. From the Figure, we see that for

approximately 50% of the images, none of the IP addresses

discovered in network structures are found in ASCII.

However, around 20% of the images have a ci � 0.2, indi-

cating that for these images of only partially known prove-

nance, there is correlation between our method and

a completely different analysis.

Looking a bit more deeply, we determine the difference in

correlation between IP addresses discovered within IP versus

socket structures. Fig. 6 shows that x53% of images contain

none of the socket addresses elsewhere. However, the corre-

lation is much stronger for addresses discovered within IP

structures where there is some correlation for 74% of the

images. In fact, for IP structures, 50% of the images have

ci � 0.5, indicating a strong correlation.

Thus, there are high-confidence IP addresses (thosewe find

through correlation between modalities) and lower-

confidence IP addresses (those which are found using

a single modality). Depending on the importance of a disk and

a target, an analyst might go after only the high-confidence IP

addresses or might go after all of them.

Finally, we examine the file source of IP addresses discov-

ered in the corpus. For 10% of the 723 images where we

discovered addresses, one of the IPs was found in the hiber-

fil.sys Windows hibernation file while 2% were in the

Table 4 e Windows 7 ground truth performance.

File Precision (High confidence) Precision (All)

Small 0.84 0.55

Medium 1.00 0.25

Large 0.50 0.22

Huge 1.00 1.00

Fig. 4 e Correlation between scanning modalities across

723 images in the corpus. Each circle corresponds to

a single hard drive, where the X axis indicates the number

of addresses found through binary carving, the Y axis

indicates the number of addresses found by ASCII carving,

and the size of the circle indicates the number of addresses

that are the same.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 8eS 8 9S84

WIN386.SWP Windows swap file. However, fully 58% of the

images had discovered IP addresses that could not be attrib-

uted to any file as inferred by the file system data.

There are severalmechanisms that could result inmemory

from hibernation and swap files being deposited into unallo-

cated regions of the hard drive for which there is no corre-

sponding file:

� After the WIN386.SWP is expanded by Windows, the file

may be fragmented. When the file is later defragmented,

some sectors may be mapped out of the file without being

overwritten.

� Users may intentionally delete the hibernation file in an

effort to recover disk space. Once deleted, the information in

the sectors will remain until they are overwritten. If the

system creates a new hibernation file, it is unlikely to

occupy the same sectors.

� Other processes may result in memory being written to disk

in user files that are then later deleted, leaving the memory

behind as residual data.

Our experience in finding network artifacts in unallocated

regions of the hard drive that are not associated with swap-

ping and hibernation strongly suggests that significant

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 Im

ag
es

Correlation of Discovered IPs with ASCII

All IPs
IPs, n>1

Fig. 5 e Correlation between scanning modalities across 723 images in the corpus: cumulative distribution of the fraction of

IP addresses discovered in network structures also found in ASCII form.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 Im

ag
es

Correlation of Discovered IPs with ASCII

struct IP
struct sockaddr

Fig. 6 e Difference in IP correlation between addresses discovered in IP versus socket structures across 723 images in the

corpus.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 8eS 8 9 S85

amounts of valuable information from ephemeral stores (e.g.

swap) is available only by examining the entire drive, and not

restricting examination to the hiberfil.sys and WIN386.SWP

files.

4.4.1. Geolocation
We scanned the NPS Real Data Corpus and found a total of

11,823 unique Ethernet MAC addresses on 74 drives. Of these

addresses, the majority of them (11,355) were multicast

addresses (as indicated by the 01:00:5E prefix Deering,

August 1989), leaving 468 addresses associated with actual

physical interfaces. We extracted these physical MAC

addresses and attempted to run them through the Wigle,

Skyhook and Google geolocation databases. We were not

able to find any of the MAC addresses in the Wigle database.

Skyhook told us that using their database in this manner

was a violation of their terms-of-service. We were unable to

find any of the addresses using Google’s API, but we were

never sure that it was operating properly due to the lack of

error codes.

Our lack of success with this database should not be

taken as evidence that the technique does not work, as the

Wigle database is very sparse and the drives in the Real Data

Corpus were primarily located in areas with little coverage

by the Skyhook or Google databases. Nevertheless, it is

evidence that a significant effort needs to be undertaken in

building a comprehensive MAC address database before it

can be successfully used to geolocate disk images in this

fashion.

We had more luck performing Geolocation on extracted IP

addresses. Partially this is because IP addresses are allocated

in blocks and follow a typology. Using this information geo-

location services are able to provide a physical location for

virtually every publicly routable IP addressdalthough

certainly some of the reported locations are less accurate than

others.

Images in the Real Data Corpus are generally tagged with

the country in which they were acquired. Using this infor-

mation as ground truth, we explored our ability to infer the

origin of images on the basis of discovered IP addresses. In

particular, we discover IP addresses on 30 images from India, 5

images fromMexico, 28 images from Israel, and 6 images from

China. For each image, we use MaxMind to geolocate each

discovered IP address and then infer the origin to be the most

frequent country.

Using this approach, we achieve accuracies of 64%, 50%,

40%, and 23% for Israel, China, Mexico, and India respectively.

However, we note that the most frequent mis-classification is

the United States which has a large concentration of servers

and infrastructure to which hosts from all over the world

access, particularly those in less developed countries. This

analysis therefore provides further validation against the

larger corpus by confirming that the carved IP addresses

represent real residual network traffic.

4.4.2. Cross-drive analysis with MAC addresses
Using the method outlined by Garfinkel (August 2006), we

performed a multi-drive correlation of all 11,823 unique

Ethernet MAC.

Our multi-drive correlation was able to identify several

cases of computers in the NPS corpus having the same

Ethernet MAC address present on their hard drive. We were

able to identify 16 Ethernet MAC addresses that were present

on more than one disk image. Treating both the MAC

addresses and disk images as nodes in a graph and the pres-

ence of an address on an image as a link, we were able to

partition the collection of disk images into eight distinct

clusters (Table 5 and Fig. 7). Clusters #1, #2, and #3 all corre-

spond to sets of drives that were removed from service at

three different organizations in India and then resold on the

secondary market, giving evidence that multi-drive correla-

tion can be used to infer network membership.

Cluster #4 is somewhat confusing, as it contains three

computers from India, one from Israel and one from the Pal-

estinian Authority. However, the Ethernet prefix 01-00-5E is

the Ethernet IPv4Multicast prefix, and not an Ethernet address

associated with a physical device. Indeed, a Google search for

the Ethernet Mac address “01-00-5E-7F-FF-FA” we conducted

in January 2011 resultedmore than 52,000 hits, demonstrating

that the address iswidely used and thus not suitable formulti-

drive correlation.

We have no explanation for Cluster #5, which appears to

correlate a disk acquired in Israel with one acquired inMexico.

The Ethernet prefix 00-E0-D0 is allocated to the NetSpeed

corporation, a company that was acquired by Cisco in 1999; it

is possible that more than one machine is using that Ethernet

MAC address.

Cluster #6 groups a computer from the Palestinian

Authority with two computers from Israel. This may be a false

match; then again, it may not be.

Table 5eUsing EthernetMAC addresses formulti-drive correlation resulted in eight partitions. The social network graph of
these MAC addresses and disk images is presented in Fig. 7.

Cluster MAC addresses Disk images in cluster

1 00-0E-90-D5-E6-5E 00-16-76-A2-60-6E 00-1B-B9-9B-D3-61 00-1B-B9-9B-D5-BB

00-1B-B9-9C-47-67 00-1E-90-D5-EE-5E 00-1E-90-DE-F1-07 00-1E-A6-01-9E-3A

IN10-0009 IN10-0010 IN10-0047 IN10-0048

IN10-0049 IN10-0050 IN10-0051 IN10-52

2 00-16-76-A2-60-6E IN10-0413 IN10-0414

3 00-04-ED-66-C7-19 00-26-18-BD-D9-E9 IN10-0561 IN10-0562

4 01-00-5E-7F-FF-FA IL38 IN10-0014 IN10-0095 IN10-0118 PS01-021

5 00-E0-D0-13-14-94 il42 mx5-30

6 00-50-04-EE-6C-F9 ps01-036 il02 il04

7 00-05-5F-EF-14-01 00-15-F2-4B-E5-1E th01-01 cn20-01

8 00-D0-B7-69-0A-41 cn4-06 DE-1039

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 8eS 8 9S86

Cluster #7 matches a computer from Thailand with

a computer from China with twoMAC addresses, one assigned

to Cisco Systems, one assigned to ASUSTek.

Cluster #8matches a computer fromChinawith a computer

from Germany.

We believe that this very preliminary evaluation demon-

strates the power of using MAC addresses for cross-drive

analysis.

5. Conclusions

We have shown that IP packets and network data structures

from memory are frequently persisted onto mass storage

devices as a result of system hibernation and virtual memory.

We have developed a tool that can be used to automatically

extract this information.

5.1. Code availability

We have incorporated our code into the current release of

bulk_extractor. The network carving code is enabled by default

in version 1.0.

5.2. Future work

This initial work suggests many avenues for future research.

We wish to investigate the extent to which residual network

information can be better categorized and filtered to recon-

struct network activities of interest. For instance, consider the

Fig. 7 e The social network graph of the table presented in Table 5. Squares indicate nodes, ovals indicate MAC addresses.

Line width is proportional to the number of times that each MAC address was found on each node. This graph was

generated automatically by running bulk_extractor on a set of 1800D disk images, processing the resulting carved Ethernet

addresses with a multi-disk correlation program, and sending the results to the GraphViz (Gansner and North, 2000) circo

program for drawing. No human intervention was required for the selection of the graph nodes or the drawing of the links.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 8eS 8 9 S87

relationship between discovered IP source and destination

address pairs. To a first order, we may be able to determine

local infrastructure by observing traffic flows to destinations

that lie within the host’s own IP address prefix, as common

services such as DNS resolvers, mail servers, etc. are typically

numbered from common or nearby address space.

Similarly, applying unsupervised clustering techniques

has potential to uncover mobility patterns, for instance as

a laptop host travels from work to home and acquires a new

local address. While the laptop has moved, and thus has ob-

tained a different source IP address, there may be servers and

other destinations to which the user connects both from

home and work. Understanding this agility is important in

forensic evaluation.

Other destinations, however, may be less discriminatory.

We may observe instances of clustering around particular

destination areas representing content distribution networks,

or other cloud services. Note that traffic to these content

networks is often optimized and routed in a geographic

fashion, suggesting a potential means to geolocate devices

whose location cannot otherwise be determined. Thus, clus-

tering provides the potential to identify both typical (i.e. to be

filtered) and interesting communication (i.e. warranting

further analysis).

To eliminate the ambiguity between destinations of

interest and those that are common (e.g. news web sites,

google, etc.), we propose further utilize cross-drive analysis

(Garfinkel, August 2006) where forensic features are evaluated

in the context of information gleaned from a much larger

corpus. By analyzing network behavior acrossmultiple drives,

we expect to more readily identify common cloud-based

services versus more discriminatory communications.

A second area of interest is extending this work to other

domains. As the distinction between mobile phones,

computers, laptops, and pads blurs,wewish to understand the

ability of our techniques to yield information on other plat-

forms. For instance, smart phones are increasingly sophisti-

cated and multi-process, and may use advanced swapping

techniques to maintain state and hibernation to boot quickly.

A reviewer of this paper suggested a 2-pass approach in

which IP addresses in a first highly accurate pass are used in

a subsequent pass withmore lenient filters. Such an approach

may be worth future investigation.

Finally, we plan to extend notions of carving binary

network structures to other protocols. Virtually all of the

techniques described in this paper should work equally well

with IPv6 addresses. The lone exception is a technique of

validation using bogus addresses discussed in x3.4, since such

determinations cannot be as readily made with IPv6. Simi-

larly, common wireless standards including IEEE 802.11,

802.15, 802.16, etc. bear further investigation, for instance the

ability to discover vital information such as base station

identifiers in beacon frames.

Acknowledgments

We wish to thank Jesse Kornbloum, Alex Nelson and Aaron

Walters as well as the anonymous reviewers for their helpful

comments on this paper. Portions of this workwere funded by

NSF Award DUE-0919593.

r e f e r e n c e s

Beverly Robert. A Robust Classifier for Passive TCP/IP
Fingerprinting. In: Proceedings of the 5th Passive and
Active Measurement (PAM) Workshop; April 2004.
p. 158e167.

Bin Liang, Wei You, Wenchang Shi. Detecting stealth malware
with inter-structure and imported signatures. In: 6th ACM
Symposium on Information, Computer and Communications
Security; March 2011.

Braden RT, Borman DA, Partridge C. Computing the internet
checksum. RFC 1071; September 1988. Updated by RFC
1141.

Chase JS, Gallatin AJ, Yocum KG. End system optimizations for
high-speed tcp. Communications Magazine, IEEE April 2001;
39(4):68e74.

Deering SE. Host extensions for IP multicasting. RFC 1112
(Standard); August 1989. Updated by RFC 2236.

Dolan-Gavitt Brendan, Srivastava Abhinav, Traynor Patrick, Giffin
Jonathon. Robust signatures for kernel data structures. In:
Proceedings of the 16th ACM conference on Computer and
communications security, CCS’09, New York, NY, USA: ACM;
2009. p. 566e577.

Elson Jeremy, Garfinkel Simson. tcpflow; 2011.
Gansner Emden R, North Stephen C. An open graph visualization

system and its applications to software engineering. Software
e Practice and Experience 2000;30(11):1203e33.

Garfinkel Simson L. Forensic feature extraction and cross-drive
analysis. In: Proceedings of the 6th annual digital forensic
research workshop (DFRWS). Lafayette, Indiana: Elsevier;
August 2006.

Garfinkel Simson L. Carving contiguous and fragmented files
with fast object validation. In: Proceedings of the 7th
Annual Digital Forensic Research Workshop (DFRWS),
August 2007.

Garfinkel Simson L, Farrell Paul, Roussev Vassil, Dinolt
George. Bringing science to digital forensics with
standardized forensic corpora. In: Proceedings of the 9th
Annual Digital Forensic Research Workshop (DFRWS);
August 2009.

Garfinkel Simson. Stream-based digital media forensics with
bulk_extractor, in submission May 2011.

Google Mobile. Using gps and my location (beta): accuracy of my
location (beta); 2011.

Hornig C. A standard for the transmission of IP datagrams over
ethernet networks. RFC 894 (Standard); April 1984.

Hubbard K, Kosters M, Conrad D, Karrenberg D, Postel J. Internet
registry IP allocation guidelines. RFC 2050 (Best Current
Practice); November 1996.

Lin Zhiqiang, Rhee Junghwan, Zhang Xiangyu, Xu Dongyan, Jiang
Xuxian. Siggraph: Brute force scanning of kernel data
structure instances using graph-based signatures. In: 18th
Annual network and Distributed System Security Symposium;
February 2011.

Meyer David. University of Oregon route views, http://www.
routeviews.org; 2010.

Nadeau David. A survey of named entity recognition. Lingvisticae
Investigationes; 2007. NRC Institute for Information
Technology; National Research Council Canada.

NIST. The computer forensics reference data sets project. http://
www.cfreds.nist.gov/.

Postel J. Internet protocol. RFC 791 (Standard); September 1981.
Updated by RFC 1349.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 8eS 8 9S88

Rekhter Y, Moskowitz B, Karrenberg D, de Groot GJ, Lear E. Rfc
1918: address allocation for private internets; February 1996.

Rekhter Y, Li T, Hares S. A border gateway protocol 4 (BGP-4). RFC
4271 (Draft Standard); January 2006.

SANS. Network forensics, http://computer-forensics.sans.org/
course/description/network-forensics-1227; 2010.

Skyhook Skyhook: how it works, 2011.
Skyhook. Skyhook core engine SDK. http://www.

skyhookwireless.com/.

Stone J, Greenwald M, Partridge C, Hughes J. Performance of
checksums and crcs over real data. IEEE/ACM Transactions on
Networking October 1998;6(5):529e43.

Suiche Matthieu. Windows hibernation file for fun ‘n’ profit. In
Black Hat 2008; 2008.

Walters A, Petroni N. Volatools: Integrating volatile memory
forensics into the digital investigation process. In: Black Hat
DC 2007; February 2007.

wigle.net. Wireless geographic logging engine. http://wigle.net/.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 8eS 8 9 S89

	 Forensic carving of network packets and associated data structures
	1 Introduction
	2 Prior work
	3 Network carving
	3.1 Creating ground truth data
	3.2 Developing carving signatures
	3.3 Methodology
	3.4 Validating IP addresses
	3.5 Local versus remote addresses
	3.6 Hibernation decompression

	4 Experimental results
	4.1 Theoretical false positive rate
	4.2 Comparison with volatility
	4.3 Against ground truth data
	4.4 Against real data corpus
	4.4.1 Geolocation
	4.4.2 Cross-drive analysis with MAC addresses

	5 Conclusions
	5.1 Code availability
	5.2 Future work

	 Acknowledgments
	 References

