Android Anti-Forensics Through a Local Paradigm

Gianluigi ME
INTRODUCTION

• Mobile phones, are among the most common and diffused current technologies:
 – 2.6 billion of subscribers in the world

• Class of Mobile Phones (NIST):
 1. Basic.
 2. Advanced.
 3. Smart.

• Regarding the forensic environment, a very large amount of personal information is stored into advanced/smartphones
STATE OF THE ART

• Mobile Forensics is still experiencing a number of difficulties and problems (mainly due to models ethereogeneity jungle and to the unremovable internal memory).

• Anti-Forensics (AF)
 – “Any attempts to compromise the availability or usefulness of evidence in the forensic process” (R. Harris – 2004)

• By the study of the AF techniques, a number of useful conclusions and guidelines can be drawn, in order to improve and harden the currently used forensic tools and techniques
KINDS OF ANTI-FORENSICS

1. Destroying Evidence
 - It involves the destruction of evidence, in order to make it unusable during the investigative process.

2. Hiding Evidence
 - It is the act of administrate the evidence in order to decrease, or even nullify, its visibility during the forensics analysis.

3. Eliminating Evidence Sources
 - It is the neutralization of the evidentiary sources.

4. Counterfeiting Evidence
 - It is the creation of a fake version of the evidence (Poisoning).
MOBILE ANTI-FORENSICS

• Classical forensic guidelines and tools, often, are not suitable for Mobile Devices as well.

• **Problem:** unavailability of a direct access to the internal memory:
 – In fact, if the removable storage volumes (e.g., memory cards, SIM cards) can be isolated from the device and analyzed with standard procedures, the internal memory volume cannot.
 – The internal memory seems to be an ideal candidate in order to apply some AF techniques.

• However, as for any other commercial forensic tool, concerns on the tool behavior arise
ANDROID OS

- Android is a set of open source software elements specifically designed for Mobile Devices, it includes:
 1. Operating System (OS).
 2. Middleware.
 3. Set of native application.

- Analysis Mason Forecasts confirms that the 2014 market share taken by Android will be approximately of 1.7 billion devices
ANDROID OS: OVERVIEW

- Android Architecture is composed by five major components:
 1. Applications.
 3. Libraries.
 5. Linux Kernel.

- Android File System:
 - Natively supported YAFFS2.
 - Designed for NAND Flash chips.
ANDROID SECURITY ARCHITECTURE

• Multi-process platform which relies on the standard Linux facilities:
 – Security between applications is enforced at process level.

• Application & Sandboxes:
 – Android denies to any application the capability to perform operations with the objective to hamper any other application, the OS or the end-user.

• User Ids & Permissions:
 – Android manages every installed application as a different Linux user.
 – The applications have to export their service to the Manifest files, It's the only way to guarantee the communication between us.
ANDROID ANTI-FORENSICS

• Three main concepts behind the work:
 1. Exploiting Android Features.
 2. A Private Folder.
 3. Anti-Forensics by a Common Application.

• Thanks to the standard Android security features, for a given application it is possible to create a directory that is inaccessible for any other applications:
 – It used to store any kind of information (e.g., text files, multimedia).
 – It’s created at install time and remove when the owning application is uninstalled.
 – Easy to figure out how this kind of folders can be exploited in order to perform AF Techniques.
 – Inaccessibility ensure the protection of the stored data.
ANDROID DATABASES

- Android OS store any kind of informations in sqlite3 databases within own application private folder, for example:
 - Contacts are in `/data/data/com.android.providers.contacts/databases/contacts.db`
 - SMS/MMS are in `/data/data/com.android.providers.telephony/databases/mmssms.db`
 - Media Files are in `/data/data/com.android.providers.media/databases/external.db`

- Any sqlite3 file has a restriction access, to provide application ownership these data;

- To read/write data into databases the applications must specify correct permission in `AndroidManifest.xml`, for example:
 - `android.permission.READ_SMS`
 - `android.permission.WRITE_SMS`

- Android AF analyzes the overall databases structure and execute some Update/Delete queries to apply AF Techniques
ANDROID ANTI-FORENSICS

• Private Folder features:
 – Data will be discovered only if the volume could be isolated.
 – Currently, isolation techniques and physical imaging are hard tasks.
 – It’s impedes the cursory examination because infos are invisible to end-user.

• Implement AF as Android Application (AFDroid)
 – At install time, AFDroid creates private folder and it allows execution of two distinct processes:
 1. Evidence Export Process (EEP)
 2. Evidence Import Process (EIP)
ANDROID AF: EEP/EIP PROCESS

EEP

EIP

.AndroidAnti-ForensicsThroughaLocalParadigm–GianluigiMe,UniversityofRomeTorVergata
EEP: GOAL & FOCUS

• **Goal**: use the AF approach to delete/counterfeit evidence.

• For each technique developed the related feature exploiting the Android Application Framework:
 – *SMS/Call Logs vs. Destroying Evidence.*
 – *Contact vs. Counterfeiting Evidence.*
 – *Media Files vs. Hiding Evidence.*
 – *MMS vs. Eliminating Evidence Sources.*

EEP Idea: Producing an `export.xml` containing the evidence gathered by the target Android databases. It’s stored by private directory.
AF-TECHNIQUES ON EEP

• **Android Destroying Evidence**: deleting from the related databases any records which can carry sensitive information:
 – The investigator cannot find any information.

• **Android Hiding Evidence**: moving sensitive media files into the private folder:
 – The multimedia management applications cannot index the data.

• **Android Eliminating Evidence Sources**: it’s enough to tamper the mechanism of conversation identifiers:
 – Any related MMS cannot be properly indexed by the system.

• **Android Counterfeiting Evidence**: it’s enough to change a flag that states if the contact is among the preferred ones, and the related number of performed interactions:
 – This evidence can lead to a fast identification of strong relations between contacts.
EIP: GOAL & FOCUS

• **Goal**: restore the last state evidence stored inside the device before the EEP process

• Fully automated evidence reconstruction:
 – By Private Folder inspection.
 – XML File processing by SAX-XML Parser.
 – Other file processing.

• Evidence reconstruction and Forensic properties:
 – Automatic process for the reconstruction leverages on the capability of restoring both the generic files and databases contents.
 – EIP is reversible from the perspective of the end-user.
EIP: EXAMPLE

- Capability to restore the previous state of the device reading `export.xml` file

SMS Example

```xml
<database name='MMS_SMS'>
<table name='sms'>
  <row>
    <col name='_id'>977</col>
    <col name='thread_id'>15</col>
    <col name='address'>YYYYYYYYYYYYY</col>
    <col name='person'>1148</col>
    <col name='date'>1265591133661</col>
    <col name='protocol'>0</col>
    <col name='read'>1</col>
    <col name='status'>-1</col>
    <col name='type'>1</col>
    <col name='reply_path_present'>0</col>
    <col name='subject'>null</col>
    <col name='body'>Text of the message</col>
    <col name='service_center'>XXXXXXXXXXXXXXXX</col>
  </row>
</table>
</database>
```

CONTACT Example

```xml
<database name='CONTACTS'>
<table name='calls'>
  <row>
    <col name='_id'>2896</col>
    <col name='number'>YYYYYYYYYYYYY</col>
    <col name='date'>1263580272900</col>
    <col name='duration'>288</col>
    <col name='type'>1</col>
    <col name='new'>1</col>
    <col name='name'>NameOfContact</col>
    <col name='number_type'>2</col>
    <col name='number_label'>null</col>
  </row>
</table>
</database>
```
EXPERIMENTS

• **Objectives:** test the strength of the selected processes in relation to the tools that are currently able to acquire a snapshot of the internal memory of the target device:
 – the strength of a given process that instantiates some AF techniques is inversely related to the capability to recover the processed evidence.

• **Used Devices:** experiments were performed on most recently smartphone:
 – Samsung Galaxy i7500, 1.6 SDK (*Kernel* 2.6.29, *Build* Donut.XEJC6)
 – HTC Magic 32b, 2.1-update1 SDK (*Kernel* 2.6.34, *Build* EPE54B)

• **Used Acquisition Tools:**
 – MIAT for Android (http://www.miaforensics.org)
 – Nandroid
EXPERIMENTS

• **Experimental Workflows**: formed by two main processes
 – Evidence Export Process – EEP
 – Evidence Destruction Process – EDP

• **Experimental Results**: considered two different kinds of analysis of the target device:
 – *Cursory examination.*
 – *Acquisition & Analysis of the internal memory.*

<table>
<thead>
<tr>
<th>File</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>com.android.browser/databases/browser.db</td>
<td>58</td>
<td>5</td>
</tr>
<tr>
<td>com.android.providers.telephony/databases/mmssms.db</td>
<td>189</td>
<td>48</td>
</tr>
</tbody>
</table>

SIZE DIFFERENCES (KB) BETWEEN THAT FILES THAT STORE THE DATABASE AFFECTED BY THE EEP
EEP – EXPERIMENTS ANALYSIS

• After this task, any cursor examination of the device shows the following situation:
 – *Contacts*: no differences in terms of number of interactions.
 – *SMS/MMS/Call Log*: databases is empty.

• **NANDROID Tools**: former data can be extracted only with the *unyaffs* tools
EEP – EXPERIMENTS ANALYSIS

• Duration of the process and load which was used.

<table>
<thead>
<tr>
<th>Load</th>
<th>Contacts & Calls</th>
<th>SMS & MMS</th>
<th>Bookmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>120</td>
<td>250</td>
<td>45</td>
</tr>
<tr>
<td>High</td>
<td>222</td>
<td>591</td>
<td>93</td>
</tr>
</tbody>
</table>
CONCLUSION

• Classification and application of the Anti-Forensics techniques to Mobile Environment

• Proposed some possible instances have been fully automated by AFDroid

• Designed and performed experiments proving the AFDroid features

FUTURE WORK

• Improving AFDroid application that has been developed:
 – ...to notice the capability to selectively choose the target evidence.

• Instantiating Anti-Forensics to other operating systems:
 – Windows Mobile, Symbian, etc...