Forensic Analysis of the Windows Registry in Memory

Brendan Dolan-Gavitt
What’s the registry?

- Centralized database that stores configuration information for Windows systems.
- Appears as a single hierarchy to the OS, but is actually made up of separate hive files unified into a single namespace.
What’s the registry? (cont.)

- Organized into keys and values. Keys are somewhat like directories, and can contain subkeys or values.

- Values are strongly typed: \texttt{REG_SZ} (string), \texttt{REG_DWORD} (integer), etc.
Why the registry?

• Lots of forensically useful information!
• Recently run programs, recent wireless networks, devices recently attached to the system (eg, USB keys)
• All keys are timestamped when written
• Harlan Carvey has done a lot of work in this area. (RegRipper)
The registry in memory

• Subsystem called the *Configuration Manager* loads hives into memory, places them into unified namespace.

• Keys and values link to one another using *cell indexes*, which are essentially pointers to other locations in the hive.

• Key and value data can be *stable* (flushed out to the on-disk hive), or *volatile* (dynamically generated, only in memory).
Cell indexes

- On disk, cell indexes are mapped to file offsets using the formula $\text{offset} = \text{ci} + 0x1000$

- In memory, more complicated: each index must be translated into a virtual address.

- To do this, we use a mapping table stored in the data structure representing a hive.
Finding the hives

• Data structure that represents a registry hive in memory: _CMHIVE

• Handy signature: 0xbe0bee0

• Pool tag: CM10

• Once one is found, we can use the kernel address space and list-walk to find the others!
Cell index translation

• Very similar to x86 non-PAE address translation!

• Cell index is divided into pieces, which give offsets into the mapping tables.
 - Array of 2 _HMAP_DIRECTORY (found in _CMHIVE.Hive.Storage)
 - Array of _HMAP_TABLE structures (1024)
 - Array of _HMAP_ENTRY structures (512)

• Entries can be 0, meaning that the data has not been brought in from disk.
Accessing keys and values

• Once cell index differences are accounted for, works just like on disk

• Exception: each key can have both stable and volatile subkeys.

• Within key structure, member SubKeyLists is actually an array of length 2

• Most non-MS registry parsers treat the second entry as “unknown”
How much data is in memory?

• Depends on level of system activity

• For lightly loaded systems (test VM, NIST images) over 98% of hive data was recoverable.

• For more heavily loaded systems, much less (around 50%)

• Depends whether the data you want has been used recently.
Volatile Data Examples

- Hardware description
- Mounted volumes
- Computer name
- User environment
Attacking cached data

• In the registry, data is flushed from memory back to disk every 5 seconds (Russinovich, 2004)

• However, if attacker bypasses normal update mechanisms and writes to memory directly, data may not get flushed!

• An attacker can use this to alter the runtime configuration of the machine without leaving traces on disk
Example: Changing the admin password

- Password hashes are stored in registry.
- Find the location in memory corresponding to the hash in the registry
- Change it to a precomputed value like `HASH(“foobaz”)` (harder than it sounds)
Example: Changing the admin password (cont.)

- Log out so that the LSA subsystem will pick up the change
- Log in with your new password!
- Upon reboot, everything is back to normal: old password works, no trace on disk.
Detecting the attack

- Since we can read the registry directly from memory, no problem
- Extract registry from memory, and compare to disk.
- If things don’t match, could indicate data altered only in memory.
Implementation

• Implemented using Volatility Framework (new HiveAddressSpace handles cell index translation)

• Code currently only works with Volatility 1.1.1 + heavy local modifications

• Work underway to port to Volatility 1.3, release as open source
Finding Hives

```
$ ftimes --diglean cmhive.ft xp-laptop-2005-07-04-1430.img

<table>
<thead>
<tr>
<th>name</th>
<th>type</th>
<th>tag</th>
<th>offset</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>42168322</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>42195802</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>47598386</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>155764586</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>155973602</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>208587610</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>208964442</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>234838874</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>243852930</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>251418754</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>252887042</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>256039730</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>269699930</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>339523202</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>346659674</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>377572186</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>387192178</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>509150850</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>51194330</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>523667586</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
<tr>
<td>xp-laptop-2005-07-04-1430.img</td>
<td>normal</td>
<td></td>
<td>527756082</td>
<td>%95%0cCM10%e0%be%e0%be</td>
</tr>
</tbody>
</table>
```
$./volatility hivelist -o 42168328 -f xp-laptop-2005-07-04-1430.img

0xe2610b60L \Documents and Settings\[...]\UsrClass.dat
0xe25f0578L \Documents and Settings\[...]\NTUSER.DAT
0xe1d33008L \Documents and Settings\LocalService\[...]\UsrClass.dat
0xe1c73888L \Documents and Settings\LocalService\NTUSER.DAT
0xe1c04688L \Documents and Settings\NetworkService\[...]\UsrClass.dat
0xe1b70b60L \Documents and Settings\NetworkService\NTUSER.DAT
0xe1658b60L \WINDOWS\system32\config\software
0xe1a5a7e8L \WINDOWS\system32\config\default
0xe165cb60L \WINDOWS\system32\config\SAM
0xe1a4f770L \WINDOWS\system32\config\SECURITY
0xe1559b38L
0xe1035b60L \WINDOWS\system32\config\system
0xe102e008L
Showing arbitrary keys and values

$./volatility printkey -f xp-laptop-2005-07-04-1430.img -o 0xe25f0578 'Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2'

Key name: MountPoints2 (Stable)
Last updated: Mon Jul 4 14:18:04 2005

Subkeys:
 C (Stable)
 D (Stable)
 {47c255f0-e599-11d9-b395-000625abeee3} (Stable)
 {6a2b71c4-9e1a-11d8-b4c2-806d6172696f} (Stable)
 {d95794c1-9e1f-11d8-b2ac-806d6172696f} (Stable)
CPC (Volatile)

Values:

$./volatility printkey -f xp-laptop-2005-07-04-1430.img -o 0xe25f0578 'Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\CPC\Volume'

Key name: Volume (Volatile)
Last updated: Mon Jul 4 14:18:04 2005

Subkeys:
 {47c255f0-e599-11d9-b395-000625abeee3} (Volatile)
 {6a2b71c4-9e1a-11d8-b4c2-806d6172696f} (Volatile)

Values:
Extracting Password Hashes

$./volatility hashdump -f xp-laptop-2005-07-04-1430.img \
 --sys-offset 0xe1035b60 --sam-offset 0xe165cb60

Administrator:500:08f3a52b0dd3f179c81667e9d738c5d9:ed88ccc08d1c18bced317112555f4:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
HelpAssistant:1000:ddd4c9c883a8ecb2078f88d729ba2e67:e78d693bc40f92a534197dc1d3a6d34f:::
SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:8bfe47482583168a0ae5ab020e1186a9:::
*****:1003:07b8418e83fad948aad3b435b51404ee:53905140b80b6d8cbe1ab5953f7c1c51:::
ASPNET:1004:2b5f618079400df84f9346ce3e830467:ae73a8bb65a0f01d9470fad55a411c:::
*****:1006:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
Future work

• Support for Windows 2000 and Vista
• Try to reconstruct tree even if some links are missing.
• Automate on-disk vs. memory comparisons
Thanks for listening!

- You can find me at:
 - brendandg@gatech.edu
 - http://moyix.blogspot.com/
 - irc.freenode.com #volatility as moyix
- Questions?