Searching for Processes and Threads in Microsoft Windows Memory Dumps.

Andreas Schuster
Deutsche Telekom AG
Group Security
andreas.schuster@telekom.de
Searching for Processes and Threads.
Agenda.

1. Introduction

2. Searching for Objects
 2.1 Memory Allocations
 2.2 Kernel Object
 2.3 EPROCESS / ETHREAD

3. Proof of Concept – PTfinder

4. Conclusion

5. Questions & Answers
Introduction.
Development of Memory Forensics in 2005.

Why memory forensics?
- certain attacks don’t leave traces on disk
- Which processes are running and since when?
- complete state: Clipboard, listening Sockets, TCP connections …

2005:
- Chris Betz - memparser
- George M. Garner Jr. and Robert-Jan Mora - kntlist
- Mariusz Burdach - Windows Memory Forensics Toolkit (WMFT) v0.1
Introduction. Enumeration of Processes.

PsActive ProcessHe

EPROCESS

smrss

flink blink

rk

flink blink

esplorer

flink blink

PsActive ProcessHe
Introduction.
Direct Kernel Object Manipulation (DKOM).

PsActive
PsActive
ProcessHe
ProcessHe
ad
ad

smrss
smrss

flink
flink

blink
blink

explorer
explorer

flink
flink

blink
blink

rk
rk

flink
flink

blink
blink

Searching for Processes and Threads
Andreas Schuster
2006-08-14, page 5
Introduction.
Searching for Objects.

Why?
- Hidden objects are present in memory.
- Terminated objects may still be found in memory – for days!

2006:
- February: Aaron Wolters and Nick L. Petroni - *FATkit*
- March: *PTfinder*
- April: Harlan Carvey - *Isproc*
- May: Chris Carr - *GREPEXC* (code not publicly available yet)
- June: Mariusz Burdach - *WMFT* v0.2
Searching for Processes and Threads.
Agenda.

1. Introduction

2. Searching for Objects
 2.1 Memory Allocations
 2.2 Kernel Object
 2.3 EPROCESS / ETHREAD

3. Proof of Concept – PTfinder

4. Conclusion

5. Questions & Answers
Searching for Objects.
Layers.

- memory allocation
- kernel object
- EPROCESS / ETHREAD
Searching for Objects.
Memory Allocation.

struct _POOL_HEADER, 9 elements, 0x8 bytes
+0x000 PreviousSize : UChar
+0x001 PoolIndex : UChar
+0x002 PoolType : UChar
+0x003 BlockSize : UChar
+0x004 PoolTag : Uint4B

PoolType: either one of the non-paged pool types or 0 („free block“)

BlockSize: constant for processes and threads, varies with OS version

PoolTag:
- Process: „Proc“
- Thread: „Thre“
- Protection flag (MSB) is set!
Searching for Objects.
Kernel Objects.

struct _OBJECT_HEADER, 12 elements, 0x20 bytes
+0x000 PointerCount : Int4B
+0x004 HandleCount : Int4B
+0x004 SEntry : Ptr32
+0x008 Type : Ptr32 to struct _OBJECT_TYPE
+0x00c NameInfoOffset : UChar
+0x00d HandleInfoOffset : UChar
+0x00e QuotaInfoOffset : UChar
+0x00f Flags : UChar
+0x010 ObjectCreateInfo : Ptr32
+0x010 QuotaBlockCharged : Ptr32
+0x014 SecurityDescriptor : Ptr32
+0x018 Body
Searching for Objects.
Kernel Objects.

Type pointer depends on:
- OS version
- amount of main memory
- other factors?

Values to scan for:
- PsProcessType
- PsThreadId

- magic number 0xbad0b0b0, indicates a defunct object (not necessarily a process or thread)

The object layer is not suitable to generate static signatures.
Searching for Objects.
EPROCESS / ETHREAD.

struct _EPROCESS, 94 elements, 0x290 bytes
+0x000 Pcb : struct _KPROCESS
 +0x000 Header : struct _DISPATCHER_HEADER
 +0x000 Type : 0x3
 +0x001 Absolute : 0
 +0x002 Size : 0x1b
 +0x003 Inserted : 0
 +0x004 SignalState : 0
 +0x008 WaitListHead : struct _LIST_ENTRY
...
 +0x070 LockEvent : struct _KEVENT
 +0x000 Header : struct _DISPATCHER_HEADER
...
 +0x130 WorkingSetLock : struct _FAST_MUTEX
 +0x000 Header : struct _DISPATCHER_HEADER

Similar structures can also be found in ETHREAD.
Searching for Processes and Threads.

Agenda.

1. Introduction

2. Searching for Objects
 2.1 Memory Allocations
 2.2 Kernel Object
 2.3 EPROCESS / ETHREAD

3. Proof of Concept – PTfinder

4. Conclusion

5. Questions & Answers
PTfinder.
About the Tool.

PTfinder = Process and Thread finder

It’s just a proof of concept:
- small and simple
- used to experiment with signatures and output formats
- no conversion between physical and virtual addresses
- works on (almost) any dump file format

It is NOT meant to be a full memory forensics application.
PTfinder.
Demo Environment.

- **PTfinder**

 http://computer.forensikblog.de/files/ptfinder/ptfinder-current.zip

- **Perl**

 http://www.perl.org/

- **GraphViz**

- **ZGRViewer**

 http://zvtm.sourceforge.net/zgrviewer.html

- memory images from the DFRWS 2005 challenge
Searching for Processes and Threads
Andreas Schuster
2006-08-14, page 16
PTfinder.
Building the Process Tree.
Searching for Processes and Threads
Andreas Schuster
2006-08-14, page 18
PTfinder.
Analyzing the Incident – LSASS Exploit.

LSASS.EXE (Local Security Authority Subsystem) is not expected to spawn processes.

Metaspoit.exe indicates the usage of a well-known exploit construction kit of the same name.

Further examination shows that UMGR32.EXE is an instance of BackOrifice by Cult of the Dead Cow.
A process „dfrws2005.exe“ is launched by the trojan horse.

The process terminates within a second. It does not report an error.
Searching the Graph.

PTfinder.

Searching for Processes and Threads
Andreas Schuster
2006-08-14, page 21
PTfinder.
Rootkit and Backdoor Service.
PTfinder.
Persistance through a Reboot.

Processes appearing to be started prior to system boot (1st image):

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Image Name</th>
<th>PID</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-06-03</td>
<td>01:25:53Z</td>
<td>csrss.exe</td>
<td>168</td>
</tr>
<tr>
<td>2005-06-03</td>
<td>01:25:54Z</td>
<td>winlogon.exe</td>
<td>164</td>
</tr>
</tbody>
</table>

2nd image:

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Image Name</th>
<th>PID</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-06-03</td>
<td>01:25:53Z</td>
<td>csrss.exe</td>
<td>168</td>
</tr>
<tr>
<td>2005-06-05</td>
<td>00:32:40Z</td>
<td>smss.exe</td>
<td>156</td>
</tr>
<tr>
<td>2005-06-05</td>
<td>00:32:43Z</td>
<td>csrss.exe</td>
<td>180</td>
</tr>
</tbody>
</table>
PTfinder.
Reliability.

Setup:

- memory dumps obtained from clean installations of Microsoft Windows XP, XP SP1, XP SP2 and Windows Server 2003
- lists of processes and threads produced by PTfinder and Microsoft kernel debugger (kd, windbg) and then compared

Results:

- False negatives: PTfinder did not miss any process/thread shown by kd. No false negatives.
- False positives: PTfinder shows some processes and threads not listed by kd. They all appear to be valid, with some artifacts from a prior run of Windows. So no false positives.
Searching for Processes and Threads.

Agenda.

1. Introduction

2. Searching for Objects
 2.1 Memory Allocations
 2.2 Kernel Object
 2.3 EPROCESS / ETHREAD

3. Proof of Concept – PTfinder

4. Conclusion

5. Questions & Answers
Results:

- works on raw dumps (dd), Windows crash dumps (DMP) and VMware (4.x/5.x) suspended sessions (VMSS/VMEM)
- reliably finds active processes and threads as well as traces of defunct ones

Future work:

- adopt signatures to Microsoft Vista/Longhorn
- evaluate possibilities to by-pass signatures
Searching for Processes and Threads.

Agenda.

1. Introduction

2. Searching for Objects
 2.1 Memory Allocations
 2.2 Kernel Object
 2.3 EPROCESS / ETHREAD

3. Proof of Concept – PTfinder

4. Conclusion

5. Questions & Answers
Thank You for Your Attention.

Andreas Schuster
Deutsche Telekom AG
Group Security
andreas.schuster@telekom.de