Categories of Digital Investigation Analysis Techniques Based on the Computer History Model

Brian D. Carrier
and
Eugene H. Spafford
DFRWS 2004 Frameworks

• More like process models
• But, there is no unique process for an investigation
• Number of phases were subjective (including ours…)
• Completeness cannot be shown
• Useful for teaching, but not as useful for research and development

www.cerias.purdue.edu
The New Approach

1. Define an investigation model based on a standard computation model.
 • i.e. mathematical model

2. Define analysis technique categories based on the investigation model.
Finite State Machine

• Finite State Machine (FSM)
 – Set of possible states: \(Q \)
 – Set of possible event symbols: \(\Sigma \)
 – State change function: \(\delta \)
 \[
 Q \times \Sigma \rightarrow Q
 \]

• We assume that a computer \textbf{CAN} be represented by a FSM
 – Reduction is not performed during an investigation
 – FSM used for hardware / software independence
Basic Event Visualization

www.cerias.purdue.edu
Computer History

• A computer’s history contains the sequence of its previous states and events

• A **digital investigation** is a process to answer questions about previous and current states and events.
 – Starts with one or more known states
 – Makes inferences about the others
 – Searches the known and inferred states and events

• **If you know the history, you can answer any question.**

www.cerias.purdue.edu
Computer History Model

• Goal is to mathematically represent the computer’s history.
• Define a set T with the times that the history exists.
• Map times in set T to the states in Q and events in Σ that occurred.

$h_{ps}: T \rightarrow Q$
$h_{pe}: T \rightarrow \Sigma$
Dynamic FSM

Problem: The set of possible states and events at 2 times can be different in real systems. Why?
Dynamic FSM

- **Problem:** The set of possible states and events at 2 times can be different in real systems. Why?

- **Sets Q and Σ can change based on:**
 - The devices that were connected.
 - The possible states for each device
 - Number of addresses
 - Domain of each address
 - The possible events for each device
Summary (thus far)

• We assume a computer CAN be represented as a FSM.
• FSM must be dynamic and account for removable devices.
• We can represent the primitive history of the computer as a mapping from times to the FSM.
Complex Systems

- Modern computers operate at “complex” levels
- Complex states: Defined by virtual storage locations that map and transform to primitive and lower-level storage locations.
 - Files, process memory, data structures...
- Complex events: A single event that causes multiple lower-level events to occur.
 - User-level events, buttons, system calls..
- A history exists for complex states and events
Dynamic Complex Systems

• Number of possible complex events and states is based on:
 – The primitive devices connected
 – The programs on each device
 – The capabilities of each program

• A file exists only if programs on the computer supports the file system....

• We can map between the different layers (file type rules, event decomposition...)

www.cerias.purdue.edu
Summary (thus far)

- The computer history model can represent complex states and events.
- Complex capabilities are based on the devices and programs that exist.
- There is (at least) one mapping between the primitive and complex histories.
Analysis Technique Categories

- If the computer history is known, we can answer any question.
- Our Hypothesis: The techniques required to define the computer history model are the same as required for a digital investigation.
Category Overview

• Eight categories and each defines specific variables (27 variables total)
• Organizing into eight is intuitive, but not required
 – There is still subjectivity
• Each category has at least one class of techniques defined based on model and practice
 – Classes may increase over time
History Duration Category (#1)

• Defines the set T of times when the computer has a history.

• When did the computer first exist?
 – Did the computer exist during the timeframe being investigated?

• Examples:
 – Manufactured date
 – OS Install date
 – Earliest MAC time
Primitive Storage Capabilities Category (#2)

- Defines the possible states of the system at each time.
 - Which storage devices existed.
 - The possible states of each device.
 - When each device was connected.

- Examples:
 - Hard disk spec or query commands
 - Logs that record connected devices
Primitive Event Capabilities Category (#3)

- Defines the possible events that could have occurred at each time.
 - The event devices that existed.
 - The possible events and state change functions for each event device.
 - When each device was connected.

- Examples:
 - Processor spec or query commands
 - Logs that record connected devices
Primitive State and Event Definition Category (#4)

• Defines the states and events that are believed to have occurred
 – Observed states
 – Event and state reconstruction
 – Event and state construction
 – Sampling
 – Capabilities

• Can use one technique for defining a state or event and others for testing.

www.cerias.purdue.edu
Layers of Abstraction
Definition Category (#5)

- Defines the layers of event abstractions
- Nearly impossible to determine
 - Requires knowledge about development process over lifetime of programs on system
 - Multiple equivalent layers exist
- In practice, make assumptions:
 - User-level events
 - File systems
Complex Storage Capabilities Category (#6)

• Defines the possible complex storage states
 – Identify the programs that exist at each time (in theory)
 – Identify the complex storage types for each time.

• Examples:
 – Reverse engineer stored data
 – Static / dynamic analysis of programs
 – Program specifications

www.cerias.purdue.edu
Complex Event Capabilities Category (#7)

• Defines the possible complex events at each time.
 – Identify the programs that exist at each time (in theory)
 – Identify the complex events defined by each program

• Examples:
 – Static / dynamic analysis of programs
 – Program specifications
Complex State and Event Definition Category (#8)

- Defines complex states and events that are believed to have occurred.
- Make inferences about previous events and states.
- Examples:
 - Event and state abstraction
 - Event and state materialization
 - Event and state reconstruction
 - Event and state construction
Summary

• Previous frameworks / classifications not based on mathematical models.
• This work defined an investigation model based on a standard computation model.
• Categories of techniques can be shown to be complete, but structure is still subjective.
• The difference between previous frameworks is how they organize these categories.
Questions?

Brian Carrier
carrier@digital-evidence.org

Eugene Spafford
spaf@cerias.purdue.edu

www.cerias.purdue.edu