ForNet: A Distributed Forensic Network

Kulesh Shanmugasundaram, Nasir Memon
{kulesh,memon}@isis.poly.edu
Outline

- Motivation
- Overview of Proposed System
- System Architecture
- An Illustrative Example
- Research Challenges
Current Security Infrastructure

- Passive Security & Networks:
 - Security is usually an overlay on network infrastructures
 - Network components are unaware of security needs

- Vendors are beginning to realize the gap
 - Cisco SAFE Initiative
 - Other NP-based solutions for IDS, Firewalls, VPNs etc.

- Need for better network forensics:
 - Lack of attack attribution on networks
 - Every year numerous cyber crimes go unsolved. Why?
 - Lack of a good response model
 - Increasing interest in prosecutions
 - Steady increase in financial losses due to cyber crimes
Current Response Model

Typical Response to Breaches:
1. Adversary breaks in & do his/her work
2. Security personal identifies the breach
3. Find out where the adversary came from (log files if still there)
4. Pick-up the phone & call the ISP, FBI
5. ISP/FBI notifies the other end
6. Go To Step 2

Average response time is in days/weeks
Involves several human interventions
Requires coordination among several administrative domains
Challenges Facing Network Forensics

- Lack of infrastructure for forensic data collection, storage, and dissemination
 - Packet logs are usually kept at network edges which do not witness many events inside a network
- Growth of network traffic outpaces Moore’s law making prolonged storage, processing, and sharing of raw network data infeasible
- Most of the process is manual and spans multiple administrative domains making response times undesirably long (e.g. digital evidence disappears quickly)
- Inability of current logging mechanisms to help forensic analysts explore networks incrementally
- Unreliable logging mechanisms on hosts
- Growing support for mobility makes it difficult to maintain prudent logging policies on hosts
A Solution

- Let the network securely collect, store, disseminate, and process *synopsis* of network traffic
- Give networks ability to remember network events so that they can answer questions like:
 - Where did a worm appear first in a domain?
 - Who sent this (possibly spoofed) packet?
 - Where else was this packet observed on the network?
- Goal: development of tools, techniques, and infrastructure to aid rapid investigation and identification of cyber crimes
What is a Synopsis?

Properties:
- Contains information to answer certain classes of queries
- Contains information to compute confidence interval
- Have small memory footprint
- Easy to update

Examples of synopsis techniques:
- Connection Records, Bloom Filters, Sampling, Histograms, Decision Trees/Clusters, Wavelets

Advantages of using synopses:
- Without synopses it is difficult to store network traffic
- Succinct representation of base data makes it possible to transfer network data to disk/storage
- Query processing would be expensive with raw data
- Sharing/transfering raw data over network is impossible
- Easily adaptable to various resource requirements
ForNet Blueprint

1. Collected SynApps
2. Simple SynApps

Enterprise Network

ISP Network

Forensic Server

SynApp Equipped Routers
Architecture of SynApp

- Network Stream
- Network Filter
- Synopsis Controller
 - Sketches
 - Bloom Filters
 - Histograms
- Synopsis Engine
- Security Manager
- Configuration Manager
- Query Processor
- Privacy Filter
- Persistent Storage
- Forensics Server
- Buffer Manager
An Illustrative Example
allow C only

Network links

Query propagation

Attack propagation

Network links
Research Challenges
Research Challenges

- Identification of useful network events
 - Network is the virtual crime scene that holds evidence in the form of network events
- Identification of various query types
 - Selection queries
 - Neighbor queries
 - Temporal queries
 - Similarity queries
 - Aggregate queries
 - Spatio-temporal joins
- Developing efficient synopses
 - Handling connection oriented & connectionless traffic
 - Cascading synopsis techniques to achieve various tradeoffs
Research Challenges

- Integration of information from synopses across networks
 - Real power of ForNet is realized when information from SynApps is fused to answer queries
 - Development of a protocol for secure communication of various ForNet components

- Storage and query processing of synopses
 - Various storage and garbage collection strategies for collected-SynApps
 - Storage and query processing infrastructure for Forensics Servers
 - A query language transparent of various underlying synopsis techniques
 - Optimization of query processing and storage
Questions...